本文共 13063 字,大约阅读时间需要 43 分钟。
基于哈希表的 Map 接口的实现。此实现提供所有可选的映射操作,并允许使用 null 值和 null 键。(除了非同步和允许使用 null 之外,HashMap 类与 Hashtable 大致相同。)此类不保证映射的顺序,特别是它不保证该顺序恒久不变。 此实现假定哈希函数将元素适当地分布在各桶之间,可为基本操作(get 和 put)提供稳定的性能。迭代 collection 视图所需的时间与 HashMap 实例的“容量”(桶的数量)及其大小(键-值映射关系数)成比例。所以,如果迭代性能很重要,则不要将初始容量设置得太高(或将加载因子设置得太低)。
先看下hashmap的数据结构
大概就是如图所示。 table就是数组咯。链表的他们称之为桶。大于阈值就转成红黑树咯,主要是为了提高效率。 使用红黑树来实现。/** * Constructs an empty HashMap with the specified initial * capacity and load factor. * * @param initialCapacity the initial capacity * @param loadFactor the load factor * @throws IllegalArgumentException if the initial capacity is negative * or the load factor is nonpositive */ public HashMap(int initialCapacity, float loadFactor) { if (initialCapacity < 0) throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity); if (initialCapacity > MAXIMUM_CAPACITY) initialCapacity = MAXIMUM_CAPACITY; if (loadFactor <= 0 || Float.isNaN(loadFactor)) throw new IllegalArgumentException("Illegal load factor: " + loadFactor); this.loadFactor = loadFactor; this.threshold = tableSizeFor(initialCapacity); } /** * Constructs an empty HashMap with the specified initial * capacity and the default load factor (0.75). * * @param initialCapacity the initial capacity. * @throws IllegalArgumentException if the initial capacity is negative. */ public HashMap(int initialCapacity) { this(initialCapacity, DEFAULT_LOAD_FACTOR); } /** * Constructs an empty HashMap with the default initial capacity * (16) and the default load factor (0.75). */ public HashMap() { this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted } /** * Constructs a new HashMap with the same mappings as the * specified Map. The HashMap is created with * default load factor (0.75) and an initial capacity sufficient to * hold the mappings in the specified Map. * * @param m the map whose mappings are to be placed in this map * @throws NullPointerException if the specified map is null */ public HashMap(Map m) { this.loadFactor = DEFAULT_LOAD_FACTOR; putMapEntries(m, false); }
其中最主要的是初始化的大小还有初始化填充因子static final float DEFAULT_LOAD_FACTOR = 0.75f;HashMap的容量超过当前数组长度*加载因子,就会执行resize()算法比如说向水桶中装水,此时HashMap就是一个桶, 这个桶的容量就是加载容量, 而加载因子就是你要控制向这个桶中倒的水不超过水桶容量的比例,比如加载因子是0.75 , 那么在装水的时候这个桶最多能装到3/4 处,超过这个比例时,桶会自动扩容。 因此,这个桶最多能装水 = 桶的容量 * 加载因子。
/** * 获取初始值,你输入的初始值,不一定是初始化时所用的初始值。 * 为什么初始值必须是2得倍数呢,下面代码会给你解释。 * Returns a power of two size for the given target capacity. */ static final int tableSizeFor(int cap) { int n = cap - 1; n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; } MAXIMUM_CAPACITY = 1<<30;
这样得到的始终是你输入初始值 小于最小的2的次幂,也就是说 比如你输入 15 --->>1629 --->>3244 --->>64
/** * Computes key.hashCode() and spreads (XORs) higher bits of hash * to lower. Because the table uses power-of-two masking, sets of * hashes that vary only in bits above the current mask will * always collide. (Among known examples are sets of Float keys * holding consecutive whole numbers in small tables.) So we * apply a transform that spreads the impact of higher bits * downward. There is a tradeoff between speed, utility, and * quality of bit-spreading. Because many common sets of hashes * are already reasonably distributed (so don't benefit from * spreading), and because we use trees to handle large sets of * collisions in bins, we just XOR some shifted bits in the * cheapest possible way to reduce systematic lossage, as well as * to incorporate impact of the highest bits that would otherwise * never be used in index calculations because of table bounds. */ static final int hash(Object key) { int h; // 这一顿操作大概的意思就是保留了高16位的值 // 其实低16位得值也保留了下来,只要在做一次异或,值就变回来了 return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); }
/** * Associates the specified value with the specified key in this map. * If the map previously contained a mapping for the key, the old * value is replaced. * * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key * @return the previous value associated with key, or * null if there was no mapping for key. * (A null return can also indicate that the map * previously associated null with key.) */ public V put(K key, V value) { return putVal(hash(key), key, value, false, true); } /** * Implements Map.put and related methods * * @param hash hash for key * @param key the key * @param value the value to put * @param onlyIfAbsent if true, don't change existing value * @param evict if false, the table is in creation mode. * @return previous value, or null if none */ final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) { Node[] tab; Node p; int n, i; // table未初始化或者长度为0,进行扩容 if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length; // 看下值放在哪一个table[] // 这里也有一个为什么table的大小为什么必须是2的倍数的原因 // n 是 tab的长度 那么 (n - 1) & hash 的意思就是? // 假如 长度为 16(10000) 那么 15(01111) & 就得到最后hash值相当于 h & (length - 1) == h % length // 这样数组也不会越界等 运算得比%运算得快 if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null); // 已经有了,就看下是放在 链表还是红黑树。 else { Node e; K k; //先比较s是不是在头节点 if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) e = p; //或者是红黑树 else if (p instanceof TreeNode) e = ((TreeNode )p).putTreeVal(this, tab, hash, key, value); //没办法了,只能是链表了 else { for (int binCount = 0; ; ++binCount) { //直接放在尾部 if ((e = p.next) == null) { p.next = newNode(hash, key, value, null); //链表大于8个阈值直接转成红黑树 if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st treeifyBin(tab, hash); break; } //存在一模一样的key则跳出继续 if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; //继续遍历 p = e; } } //如果找到了存放的位置 if (e != null) { // existing mapping for key V oldValue = e.value; // onlyIfAbsent为false或者旧值为null // onlyIfAbsent是传入的参数 默认w为false直接替换 if (!onlyIfAbsent || oldValue == null) //用新值替换旧值 e.value = value; afterNodeAccess(e); // 返回旧值 return oldValue; } } ++modCount; // 实际大小大于阈值则扩容 if (++size > threshold) resize(); afterNodeInsertion(evict); return null; }
相对于put,get就比较简单了。相对jdk1.7版本 1.7 ---->1.8 位桶+链表 ----> 位桶+链表大于阈值(8)后切换成红黑树大数据下 O(n)->>O(Logn)
/** * Returns the value to which the specified key is mapped, * or { @code null} if this map contains no mapping for the key. * *More formally, if this map contains a mapping from a key * {
@code k} to a value { @code v} such that { @code (key==null ? k==null : * key.equals(k))}, then this method returns { @code v}; otherwise * it returns { @code null}. (There can be at most one such mapping.) * *A return value of {
@code null} does not necessarily * indicate that the map contains no mapping for the key; it's also * possible that the map explicitly maps the key to { @code null}. * The { @link #containsKey containsKey} operation may be used to * distinguish these two cases. * * @see #put(Object, Object) */ public V get(Object key) { Nodee; return (e = getNode(hash(key), key)) == null ? null : e.value; } /** * Implements Map.get and related methods * * @param hash hash for key * @param key the key * @return the node, or null if none */ final Node getNode(int hash, Object key) { Node [] tab; Node first, e; int n; K k; // table已经初始化,长度大于0,根据hash寻找table中的项也不为空 if ((tab = table) != null && (n = tab.length) > 0 && (first = tab[(n - 1) & hash]) != null) { //判断是不是第一个结点 是就返回 if (first.hash == hash && // always check first node ((k = first.key) == key || (key != null && key.equals(k)))) return first; // 节点下面还有东西? if ((e = first.next) != null) { // 是红黑树吗? if (first instanceof TreeNode) return ((TreeNode )first).getTreeNode(hash, key); //不是红黑树那你肯定是链表咯 do { if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) return e; } while ((e = e.next) != null); } } return null; }
hashmap的扩容方法
/** * Initializes or doubles table size. If null, allocates in * accord with initial capacity target held in field threshold. * Otherwise, because we are using power-of-two expansion, the * elements from each bin must either stay at same index, or move * with a power of two offset in the new table. * * @return the table */ final Node[] resize() { //保存旧的 Node [] oldTab = table; //保存长度 int oldCap = (oldTab == null) ? 0 : oldTab.length; //保存阈值 需要resize的阈值 int oldThr = threshold; int newCap, newThr = 0; // 之前table大小大于0 if (oldCap > 0) { // 之前table大于最大容量 if (oldCap >= MAXIMUM_CAPACITY) { // 阈值为最大整形 threshold = Integer.MAX_VALUE; return oldTab; } // 容量翻倍,使用左移,效率更高 else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) // double threshold 阈值翻倍 newThr = oldThr << 1; // 之前阈值大于0 else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; // oldCap = 0并且oldThr = 0,使用缺省值(如使用HashMap()构造函数,之后再插入一个元素会调用resize函数,会进入这一步) else { // zero initial threshold signifies using defaults newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } // 新阈值为0 if (newThr == 0) { float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({ "rawtypes","unchecked"}) // 初始化table Node [] newTab = (Node [])new Node[newCap]; table = newTab; // 之前的table已经初始化过 if (oldTab != null) { // 复制元素,重新进行hash for (int j = 0; j < oldCap; ++j) { Node e; if ((e = oldTab[j]) != null) { oldTab[j] = null; //如果链表只有一个,则直接赋值 if (e.next == null) newTab[e.hash & (newCap - 1)] = e; //红黑树啊 else if (e instanceof TreeNode) ((TreeNode )e).split(this, newTab, j, oldCap); //只能是链表了 else { // preserve order Node loHead = null, loTail = null; Node hiHead = null, hiTail = null; Node next; do { next = e.next; if ((e.hash & oldCap) == 0) { if (loTail == null) loHead = e; else loTail.next = e; loTail = e; } else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); if (loTail != null) { loTail.next = null; newTab[j] = loHead; } if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; }
这一顿操作之后大概就是这个过程吧
HashMap运用了许多非常巧妙的算法吧,大量的使用到了位运算,让这个结构运行更稳定更巧妙。每次看都有新收获。